NG

Geomechanics for CO_2 storage sites: Longyearbyen (Arctic Norway) and In Salah (Algeria)

Bahman Bohloli Norwegian Geotechnical Institute

Presentation for EAGE Czech Republic & EAGE Germany Oct 14, 2021 Online

Outline

Introduction

- Geomechanical studies for Longyearbyen CO₂ lab- Svalbard
- Injection data vs geomechanics-In Salah

¬ Conclusions

Intro: Greenhouse gases in the atmosphere

NG

https://ecen.com/eee55/eee55e/growth_of%20methane_concentration_in_atmosphere.htm

CO₂ emission from industrial processes

Cement production; double emissions, ca. 1500 Mt/y of CO2

- Calcination of limestone: $CaCO_3 \rightarrow CaO + CO_2 (\approx 50\%)$
- Heating from fossil fuels \rightarrow CO₂ (\approx 40%)

Case 1: Longyearbyen CO₂ Lab Pilot, Svalbard

NGI Geology profile

Q1: What is the max. allowable pressure?

Q1: Max. allowable

pressure (Cont.)?

Fracture orientation?

Section	Testing depth (m)/ Formation	Number and type of tests	Well No.	
Overburden	171–181 Helvetia Fm.	Step rate test (SRT) Fracture test		
	300–309 Rurikfjellet Fm.	2 leak-off tests (LOT)	Dh6	
	420–435 Agardhfjellet Fm.	2 leak-off tests (LOT)		
Reservoir	650–703 Lower Agardhfjellet Fm. Upper Knorringfjellet Fm.	2 step rate tests	Dh7A	
	870–970 De Geerdalen Fm.	Step rate test	Dh4	

Q2. Does fracture/fault slip create seismic event?

$$\mu = \mu_0 + aln(V/V_0) + bln(V_0\theta/d_c)$$

 Velocity step shear testevolution of friction (μ):

NG

With θ and (a-b):

$${^{d\theta}}/_{dt} = 1 - {\binom{V_0\theta}{d_c}} \qquad (\boldsymbol{a} - \boldsymbol{b}) = \frac{\mu_0 - \mu}{\ln(\frac{\nu}{\nu_0})}$$

Direct shear test: a lab method used for evaluating the seismic potential

Rurikfjellet Cretaceous shale from Svalbard, TOC = 1%-2%

Seismogenic potential of Svalbard/Rurikfjellet shale

NG

 $(a-b) > 0 \rightarrow Aseismic slip$

Case 2: In Salah CO₂ storage site

Ref: Geomechanical data and interpretation, (Bissell, 2009, modified)

NG

Gas production, CO₂ separation-injection and reservoir response

(White et al., 2014)

How is the performance of reservoir against geomechanical constraints?

⁽Modified after Mathieson et al., 2011)

Geomechanics constraints - fracture pressure

Empirical method: minimum, average and maximum fracture ٦ pressure (Eaton 1968, Zhang 2011):

(After Rutqvist et al., 2010)

Rate

$$P_{\text{frac min}} = \sigma_3 = \frac{\nu}{1 - \nu} (\sigma_v - P_p) + P_p$$
$$P_{\text{frac ave}} = \frac{3\nu}{2(1 - \nu)} (\sigma_v - P_p) + P_p$$
$$P_{\text{frac max}} = \frac{2\nu}{1 - \nu} (\sigma_v - P_p) + P_p$$

Layer	Shallow overburden	Caprock	Injection zone
	(0-900 m)	(900-1800 m)	
Lithology	Cretaceous sandstone	Carboniferous	Carboniferous
	and mudstones	mudstones	sandstones (C10.2)
Young's modulus, E (GPa)	1.5	20	6
Poisson's ratio, v (-)	0.2	0.15	0.2
Effective porosity, ϕ (-)	0.1	0.01	0.17
Permeability, k (m ²)	1*10 ⁻¹⁷	1*10 ⁻²¹ - 1*10 ⁻¹⁹	$1*10^{-14}$

Well tests

- Minifrac test
- Step rate test (SRT)
- **Injection data**

NG

Fracture pressure: pressure-rate plot

Fracture pressure: pressure-rate plot (Pseudo SRT)

 Plot of pressure vs rate in specific time intervals shows distinct clouds of data points, intersection of their trend lines indicates fracture pressure.

Fracture pressure from injection time series

Well KB502: a long-time fracturing episode. Fracture pressure almost constant over time.

Microseismic at Kb-601

NG

NORSAR

- Geophone array downhole
- All geophones on common GPS time
 - Removed large electronic noise.

Correlation of fracture episodes with microseismicity

Ground surface monitoring- to understand reservoir behaviour

-SE/\SE

Assuring integrity of CO₂ storage sites through ground surface monitoring

https://sense-act.eu/

Ref.: Bohloli et al. 2018

Summary

- In Salah and Longyearbyen CO₂ storage sites have provided excellent knowledge and experience to the geoscience/geoengineering community.
- It shows how performance of a reservoir can be monitored against safe injection pressure-risk of fracturing. Open questions:
 - How to obtain e.g. actual frac pressure in advance,
 - If case of fracturing, frac orientation/location in a cost effective way?
- Important to have basic mechanical, in-situ stresses and workflows for storage site monitoring.
- Multidisciplinary approaches (geological, geophysical, reservoir engineering, hydrogeological concepts) are essential for understanding reservoir performance & integrity.

Thank you for your attention!

sense-act.eu

CCS Research funding- possible programs

- ◄ Horizon Europe
- Accelerating CCS Technology (ACT)- a new format in 2022
- Bilateral research funds
- Research calls by the Research Council of Norway (CLIMIT, INTPART, etc.)

NORGES GEOTEKNISKE INSTITUTT NGI.NO