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 10 

1 Abstract 11 

 12 

In regional-scale processes, such as CO2 storage and reservoir pressure support during hydro-carbon 13 

production, small-scale structures like fractures and faults can in results in large numerical problems 14 

that renders a numerical solution infeasible. To numerically resolve and solve such thin features we 15 

need to resort to averaging and upscaling techniques. Here we describe the poroelastic response in a 16 

high-aspect ratio structure by using dimensional reduction via a zero-thickness element type. The 17 

governing equations are integrated across the thickness of the high-aspect ratio domain, assuming 18 

linear variation in displacement across the thickness of the structure, to derive a traction force on the 19 

upscaled structure termed poroelastic normal deflection equation (PND). The solution of the PND 20 

approximation is compared, in a Monte Carlo simulation study, to a typically used Goodman-type 21 

upscaling approximation (thin elastic layer, TEL) as well as a reference solution where the high-aspect 22 

ratio structure is fully resolved. The PND formulation is here demonstrated in a finite element method 23 

framework. It was found that the PND is robust with an accuracy that is to a leading order depending 24 

on the thickness, or aspect ratio, of the upscaled structure. For an aspect ratio of 5 %, the error, 25 

Manuscript Click here to
access/download;Manuscript;VE_PND_GEM_v2.pdf

Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www.editorialmanager.com/ijge/download.aspx?id=20497&guid=374e71d1-730e-4e01-97a1-b19c433b5b38&scheme=1
https://www.editorialmanager.com/ijge/download.aspx?id=20497&guid=374e71d1-730e-4e01-97a1-b19c433b5b38&scheme=1
https://www.editorialmanager.com/ijge/viewRCResults.aspx?pdf=1&docID=436&rev=0&fileID=20497&msid=9302ace4-d834-4d02-b6a7-c7a664ecac03


2 
 

compared to the reference solution, is generally less than 10 %. The accuracy of TEL is to a leading 26 

order depending on the stiffness ratio between the upscaled structure and the surrounding 27 

formations. The error when using TEL is lower or equal compared to PND for soft upscaled structures, 28 

but the accuracy breaks down when the surrounding formations become softer than the upscaled 29 

structure (error up to 1000 times larger compared to PND). The robustness and generally elevated 30 

accuracy of PND compared to TEL is due to the addition of extra degrees of freedom, but the added 31 

numerical cost is very modest since it only applies to the already dimensionally reduced domain. 32 

Furthermore, PND requires only a minor modification to any numerical code that already supports TEL, 33 

making PND more attractive to use. 34 

 35 

2 Introduction 36 

 37 

Regional-scale models are central when studying the performance of large-scale subsurface processes 38 

such as CO2 storage, reservoir pressure support during hydro-carbon production and others. In 39 

regional-scale models it is often necessary to include details of a formation or a geological feature 40 

where one of the dimensions are relatively thin compared to the characteristic length or width scale 41 

of the feature or area of interest. These features are known as high-aspect ratio geometric shapes or 42 

entity and may even be shown as lines on geological maps and seismic interpretations. Such thin 43 

features can be structures such as faults, fractures and dikes, or even stratigraphic units, e.g., thin 44 

reservoirs and caprocks. 45 

The thin nature of a high-aspect ratio geometric entity adds details to the numerical description of a 46 

model. When discretizing details in a numerical model (e.g., finite element, finite difference), the 47 

resolution increases with the level of details, e.g., increases the computational grid/mesh density. This 48 

increase in resolution may not be an issue in two dimensional models, but in three dimensional models, 49 

it rapidly increases the computational demand, to the point that full three-dimensional descriptions 50 

are rendered infeasible. These high-aspect ratio entities, although shown as lines on geological maps 51 

and seismic interpretations, can also have complex internal structures and may dominate the 52 

hydromechanics of reservoir or caprock, consider for example geocellular description of a fault 53 

structure (Fredman et al., 2007; Kolyukhin and Tveranger, 2015; Grant, 2020; Bjørnarå et al., 2021). 54 

This leads us to search for simplifications that do not significantly alter the problem and the solution. 55 

One remediation is to simply ignore some or all the high-aspect ratio entities (defeaturing) or simplify 56 

the morphology of the structure. In the case of faults in geocellular models (e.g., Lutome et al., 2021) 57 
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and geocellular faults (e.g., Fredman et al., 2007), representing another remediation, is that the along-58 

fault flow process is sometimes completely ignored such that the property of a complex fault is 59 

reduced to a pressure discontinuity in the across-fault flow direction only, characterised by 60 

transmissibility multipliers. Both approaches are sometimes good and appropriate approximations, 61 

because reducing details is always a good strategy, but when reducing too much then also too much 62 

information may be lost, and when reducing too little the model can be too demanding to solve. 63 

Another, more attractive method, in line with the latter transmissibility multiplier, is the use of 64 

upscaling techniques where a rock body or structure, is reduced to a zero-thickness surface. Upscaling 65 

can be done in several ways. Here we consider dimensional reduction, of a high-aspect ratio (HAR) 66 

geometrical entity, that together with the appropriate mathematical description, substantially reduces 67 

the size of the numerical problem while retaining the accuracy. This benefit has historically been 68 

demonstrated extensively for fluid flow, both single-phase and multi-phase flow, a.k.a. segregated flow 69 

and Dupuit approximation, with a renewed interest to simulate regional-scale CO2 migration (e.g., 70 

Nordbotten et al., 2005; Gasda et al., 2011). To capture the geomechanical response in thin layers, 71 

spring descriptions have been used, where a high-aspect ratio entity is replaced by a discontinuity with 72 

springs representing stiffness in normal direction and tangential (shear) direction (e.g., Goodman et 73 

al., 1968). Instead, here we apply a more detailed description, a zero-thickness element type approach 74 

with a linearized description of the displacement components across the thickness of the reduced 75 

domain. This approximation, termed poroelastic normal deflection (PND), was inspired by early works 76 

by Bear and Corapcioglu (1981a, 1981b, 1983) which was extended to also consider varying horizontal 77 

displacement and embedded volumes. The PND approximation was validated in 2D for an embedded 78 

horizontal domain (Bjørnarå et al., 2016) and applied to a vertical fault structure in combination with 79 

the cohesive zone model (e.g., Camanho and Hallet, 2015) for a vertical domain (Bjørnarå et al., 2021). 80 

The PND approximation allows replacing relatively thin structures with variable thickness and shape to 81 

substantially reduce the complexity of a numerical model and the method is flexible and extendable 82 

to also capture more complex internal structure, e.g., multiple and/or heterogeneous layers. The 83 

mathematical description of PND is described and the aim of this paper is to demonstrate its 84 

applicability through a validation study where the results of using PND and a commonly used upscaling 85 

technique are compared to the results from a full-dimensional model. 86 

In the following we will use abbreviations to distinguish the two upscaling methods applied here. PND 87 

is a zero-thickness thin-layer element that will be compared to the simpler Goodman-type interface 88 

element that will be referred to as TEL (thin elastic layer). HAR geometrical entity is a high-aspect ratio 89 

volume domain that is, in the PND and TEL approach, collapsed to a surface domain. By upscaled 90 
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structure we here mean a volumetric structure that is collapsed to a lower dimensional object (a 91 

face/surface in 3D, and an edge in 2D) such that it has zero thickness. 92 

 93 

3 Method 94 

 95 

To validate the PND approximation we need to upscale the poroelasticity equations and first we define 96 

the governing equations for linear poroelasticity of a porous media as described by Biot (1941). These 97 

equations require special treatment in the upscaled structure, which is to solve on a zero-thickness 98 

domain, obtained by integrating the governing equations across the thickness of the weakness zone. 99 

Poroelasticity describes the constitutive behaviour of a fluid saturated rock where the fluid pressure 100 

directly affects the effective stresses. Note that for this validation model we do not account for a fluid 101 

flow problem and for simplicity we basically prescribed a constant fluid pressure in the upscaled 102 

structure. 103 

The upscaled equation for the PND approximation was then implemented in a numerical validation 104 

model example and solved using the finite element method. Additionally, the TEL approximation was 105 

also solved for and the solution of both upscaled models (PND and TEL) were compared to a full-106 

dimensional description of the dimensionally reduced domain (reference model). A Monte Carlo 107 

simulation was performed to obtain the statistical performance and uncertainty in accuracy of the PND 108 

and TEL approximations. 109 

 110 

3.1 Governing equations: poroelasticity 111 

 112 

From the theory of linear poroelasticity (Biot, 1941) we have the momentum balance equation: 113 

−∇ ⋅ (𝛔𝛔) = 𝐟𝐟 Eq. 1 

where 𝛔𝛔 [Pa] is the total stress tensor and 𝐟𝐟 [Pa] is the body load vector due to gravity and/or 114 

acceleration forces in dynamic problems. The poroelastic total stress tensor (here for an extensional 115 

stress regime; stress is positive in extension) is expressed as: 116 

𝛔𝛔 = 𝝈𝝈0 + 𝛔𝛔′ − 𝛼𝛼Δ𝑝𝑝𝐈𝐈 Eq. 2 

where 𝛔𝛔0 [Pa] is the initial stress, 𝛔𝛔′ [Pa] is the effective stress, the part of the total stress that causes 117 

deformation. The poroelastic load is expressed with Biot's coefficient 𝛼𝛼 [-], typically defined as: 118 
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𝛼𝛼 = 1 −
𝐾𝐾
𝐾𝐾s

 Eq. 3 

where 𝐾𝐾s [Pa] is the bulk modulus of the solid constituents of the porous rock. The pressure change-119 

term in Eq. 2 describes the change in fluid pressure relative to a reference pressure 𝑝𝑝0 [Pa]; Δ𝑝𝑝 = 𝑝𝑝 −120 

𝑝𝑝0. The effective stress is defined as: 121 

𝛔𝛔′ = λ𝜀𝜀𝑣𝑣𝐈𝐈 + 2𝐺𝐺𝛆𝛆 Eq. 4 

Where 𝜆𝜆 [Pa] and 𝐺𝐺 [Pa] are the Lamé coefficients, 𝜀𝜀𝑣𝑣 [-] is the volumetric strain, 𝐈𝐈 [-] is the identity 122 

matrix and 𝛆𝛆 [-] is the strain tensor: 123 

𝛆𝛆 =
1
2

[(∇𝐮𝐮)𝑇𝑇 + ∇𝐮𝐮] Eq. 5 

where 𝐮𝐮 [m] is the displacement vector and the volumetric strain can be expressed as 𝜀𝜀𝑣𝑣 = ∇ ⋅ 𝐮𝐮. Note 124 

that the Lamé coefficients are related to the Young's modulus 𝐸𝐸 [Pa] and the Poisson's ratio 𝜈𝜈 [-] by: 125 

𝜆𝜆 =
𝐸𝐸𝜈𝜈

(1 + 𝜈𝜈)(1− 2𝜈𝜈)
, 𝐺𝐺 =

𝐸𝐸
2(1 + 𝜈𝜈)

 Eq. 6 

 126 

To describe the poroelastic behaviour of a high-aspect ratio (HAR) structure we used two 127 

approximations, PND and TEL, that are both zero-thickness interface element-types. An important note 128 

on these zero-thickness interface element-types is that they require decoupling of the displacement 129 

variables across the interface. This is done by adding (duplicating) a minimum of one additional degree 130 

of freedom for every degree of freedom on the upscaled structure. These duplicated degrees of 131 

freedom allow the description of a discontinuous displacement on opposite sides of the interface, and 132 

they are distinguished by referring to them as the upside- and downside-component with the 133 

subscripts 𝑢𝑢 and 𝑑𝑑, respectively. The two sides of the interface are then connected by force-terms that 134 

are equal in magnitude but opposite in direction and it is the description of these force-terms that 135 

distinguish the various approximations. 136 

 137 

3.1.1 Upscaled equations: poroelastic normal deflection (PND) 138 

 139 

The assumption behind the PND approximation is that the displacement across the thickness of the 140 

structure is varying linearly, hence the displacement vector in the HAR structure, 𝐮𝐮𝑟𝑟 [m], can be 141 

expressed in terms of (1) the displacement at the upside, 𝐮𝐮𝑢𝑢 [m], and (2) downside, 𝐮𝐮𝑑𝑑 [m], and (3) 142 

the integration path 𝜁𝜁 [m]: 143 
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𝐮𝐮𝑟𝑟 = 𝐮𝐮𝑑𝑑 +
𝐮𝐮𝑢𝑢 − 𝐮𝐮𝑑𝑑

𝐻𝐻
(𝜁𝜁 − 𝜁𝜁𝑑𝑑) Eq. 7 

The integration path is in the direction normal to the upscaled structure. When integrating the 144 

momentum balance equation, Eq. 1, we obtain: 145 

�(−∇ ⋅ 𝛔𝛔)
𝜁𝜁

𝑑𝑑𝜁𝜁 = ∇� ⋅ 𝚺𝚺 + (𝛔𝛔 ⋅ 𝐧𝐧)|𝑢𝑢 − (𝛔𝛔 ⋅ 𝐧𝐧)|𝑑𝑑 Eq. 8 

where ∇� is the tangential differential operator and the subscripts 𝑢𝑢 and 𝑑𝑑 are again used to describe 146 

the upside and downside of the zero-thickness HAR structure, (𝜎𝜎 ⋅ 𝐧𝐧)-terms are the traction forces and 147 

𝐧𝐧 is the normal vector. The integrated stress tensor 𝚺𝚺 [Pa⋅m] becomes: 148 

𝚺𝚺 = �(𝛔𝛔)
𝜁𝜁

𝑑𝑑𝜁𝜁 = 𝜆𝜆�∇� ⋅ 𝐔𝐔�𝐈𝐈 + 𝐺𝐺 �∇�𝑈𝑈 + �∇�𝑈𝑈�𝑇𝑇� + 

𝜆𝜆(𝐮𝐮 ⋅ 𝐧𝐧|𝑢𝑢 − 𝐮𝐮 ⋅ 𝐧𝐧|𝑑𝑑)𝐈𝐈 + 𝐺𝐺(𝐮𝐮𝐧𝐧|𝑢𝑢 − 𝐮𝐮𝐧𝐧|𝑑𝑑) + 𝐺𝐺(𝐧𝐧𝐮𝐮|𝑢𝑢 − 𝐧𝐧𝐮𝐮|𝑑𝑑) −𝐻𝐻𝛼𝛼𝑝𝑝𝐈𝐈 
Eq. 9 

The integrated displacement vector 𝐔𝐔 [m2] is now expressed by: 149 

𝐔𝐔 = �(𝐮𝐮)𝑑𝑑𝜁𝜁
ζ

=
𝐮𝐮|𝑢𝑢 + 𝐮𝐮|𝑑𝑑

2
𝐻𝐻 Eq. 10 

The integrated volumetric strain 𝛦𝛦𝑣𝑣 [m] is expressed as: 150 

𝛦𝛦𝑣𝑣 = �(𝜀𝜀𝑣𝑣)𝑑𝑑𝜁𝜁
ζ

= ∇� ⋅ 𝐔𝐔 + 𝐮𝐮 ⋅ 𝐧𝐧|𝑢𝑢 − 𝐮𝐮 ⋅ 𝐧𝐧|𝑑𝑑 Eq. 11 

In summary, we can express the PND equation in a similar form as the momentum balance equation 151 

in Eq. 1 in the tangential plane of a zero thickness, high-aspect ratio structure: 152 

−∇� ⋅ 𝚺𝚺 = 𝐅𝐅 Eq. 12 

where we have collected the traction terms and the integral of the body load vector in 𝐅𝐅: 153 

𝐅𝐅 = (𝛔𝛔 ⋅ 𝐧𝐧)|𝑢𝑢 − (𝛔𝛔 ⋅ 𝐧𝐧)|𝑑𝑑 + �(𝐟𝐟)
𝜁𝜁

𝑑𝑑𝜁𝜁 Eq. 13 

 154 

3.1.2 Thin elastic layer, TEL (Goodman-type) 155 

 156 

A common approximation of thin elastic layers is to reduce the elastic response, or poroelastic 157 

response, in a thin layer to a spring type, zero-thickness interface. The spring forces, or traction forces 158 

𝐭𝐭𝑠𝑠 [Pa] on the HAR structure depend on the relative displacement between the upside and downside 159 

of the HAR structure and act in opposite directions: 160 

𝐭𝐭𝑠𝑠,𝑢𝑢 = −𝐭𝐭𝑠𝑠,𝑑𝑑 = −
𝐃𝐃(𝐮𝐮𝑢𝑢 − 𝐮𝐮𝑑𝑑)

𝐻𝐻
 Eq. 14 
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where the stiffness matrix 𝐃𝐃 [Pa] is expressed by the normal and tangential stiffness of the HAR 161 

structure: 162 

𝐃𝐃 = 𝑀𝑀𝐧𝐧𝐧𝐧 + 𝐺𝐺(𝐈𝐈 − 𝐧𝐧𝐧𝐧) Eq. 15 

and where 𝑀𝑀 [Pa] is the constrained modulus: 163 

𝑀𝑀 =
𝐸𝐸(1 − 𝜈𝜈)

(1 + 𝜈𝜈)(1− 2𝜈𝜈) Eq. 16 

The natural boundary condition for applying a load on the faces of the HAR structure can be described 164 

as: 165 

𝛔𝛔 ⋅ 𝐧𝐧 = 𝐭𝐭𝑠𝑠 − 𝛼𝛼𝑝𝑝𝐧𝐧 Eq. 17 

where 𝑝𝑝 [Pa] is the fluid pressure inside the HAR structure. 166 

 167 

3.2 Numerical models 168 

 169 

For the validation study of the PND equation we defined a test case that challenges the typically 170 

expected capabilities of approximations of high-aspect ratio structures. The solution of the full-171 

dimensional model was compared to the solution of the upscaled models using PND and TEL. 172 

 173 

3.2.1 Validation model 174 

 175 

The geometry of the validation model is shown in Fig. 1, it consists of a square geometry with sides of 176 

400 m and a high-aspect ratio structure in the centre. The HAR structure is a sine-shaped rectangular 177 

domain with a fixed length of 100 m. 178 

 179 
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 180 

Fig. 1 Geometry of validation models. Left: geometry used for the upscaled (PND and TEL) models (wavy black line represents 181 
the high-aspect ratio structure). Right: Model used for the full-dimensional model (dark-grey shaded area is the pressurized 182 
HAR structure, 𝑝𝑝 = 1 MPa). The red rectangles indicate the locations where the solutions of the models are compared. The 183 
blue dashed lines indicate that the bottom boundary is constrained, all other outer boundaries have zero traction (free 184 
boundaries). In the figure the length of the structure is 100 m (constant, not varied in this analysis), rotation is 30°, height is 185 
10 m and amplitude is 10 m 186 

 187 

In the validation study, the height, shape, and angle of the HAR structure, as well as the mechanical 188 

properties of the HAR structure and surrounding formation are varied according to Table 1. 189 

 190 

Table 1. Properties in the validation model that are varied. Note that the Young's modulus and Poisson's ratio are varied for 191 
both the HAR structure and the surrounding formations. 192 

Property, variable Unit Value Description 

Height, 𝐻𝐻 [m] 0.05-10 Height/thickness of HAR object 

Rotation, 𝑅𝑅 [deg] 0-90 
The angle of the HAR structure varies between 0° 

(horizontal) 90° (vertical) around its centre. 

Amplitude, 𝐴𝐴 [m] 0-10 
The HAR structure is sine-shaped with a fixed 1.5 

period in the length direction and variable amplitude. 

Young's modulus, 𝐸𝐸 [GPa] 0.01-10 
The Young's modulus of the HAR structure (𝐸𝐸𝑢𝑢𝑢𝑢) and 

surrounding formation (𝐸𝐸0) vary independently. 

Poisson's ratio, 𝜈𝜈 [-] 0.1-0.4 
The Poisson's ratio of the HAR structure (𝜈𝜈𝑢𝑢𝑢𝑢) and 

surrounding formation (𝜈𝜈0) vary independently. 
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 193 

Although the mechanical properties and dimensions used here are inspired by rock properties and 194 

dimensions of small-scale features relevant for a regional scale model, the methodology is also 195 

applicable to other applications, materials, and geometrical scales beyond what is demonstrated here 196 

since the problem is treated linearly poroelastic. 197 

Because the geometry of the upscaled models and the full-dimensional model are inherently different 198 

(zero-thickness domains versus volumetric domain, respectively), the results of the three different 199 

models are compared along a perimeter around the HAR structure, as indicated by the red lines in Fig. 200 

1. 201 

 202 

3.3 Performance analysis: validation model 203 

 204 

To validate and analyse the performance of the PND and TEL approximations we performed a Monte 205 

Carlo simulation. We solved many combinations of model parameters that may influence the 206 

performance of the upscaled approximations, these include geometrical and mechanical properties of 207 

the dimensionally reduced domain and the surrounding domain and compared the results from three 208 

models (two upscaled models and a full-dimensional model). The RMS (root mean square, Eq. 19) of 209 

the total displacement 𝑆𝑆 [m] along a rectangular perimeter around the dimensionally reduced domain 210 

were evaluated (red dotted lines in Fig. 1) and are presented in the following section. The total 211 

displacement 𝑆𝑆 is expressed as: 212 

𝑆𝑆 = ��𝑢𝑢𝑖𝑖2
𝑁𝑁

𝑖𝑖=1

 Eq. 18 

where 𝑢𝑢𝑖𝑖 [m] is the cartesian displacement component in direction 𝑖𝑖 in 𝑁𝑁-dimension. The RMS of the 213 

error is calculated using: 214 

RMS = �
1
𝑛𝑛
��

𝑌𝑌𝑖𝑖 − 𝑦𝑦𝑖𝑖
𝑤𝑤𝑖𝑖

�
2𝑛𝑛

𝑖𝑖=1

 

 

Eq. 19 

Here 𝑌𝑌 is the solution variable (total displacement 𝑆𝑆) of the upscaled model and 𝑦𝑦 is the solution 215 

variable from the full-dimensional model. The weighting number 𝑤𝑤𝑖𝑖 is ideally equal to 𝑦𝑦𝑖𝑖, then the RMS 216 

will be a direct measure of accuracy, but to avoid division by a very small number, and artificially blow 217 
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up the RMS-value, the weighting number is here chosen to be the mean of 𝑦𝑦𝑖𝑖  along the comparison 218 

perimeter (red rectangle in Fig. 1). The RMS is thus an approximate measure of the error, or more 219 

precisely, an approximate measure of inaccuracy; the lower RMS, the more accurate the upscaled 220 

models are. RMS of zero would indicate zero inaccuracy, or identical solutions for the upscaled and 221 

full-dimensional models. 222 

 223 

4 Results 224 

 225 

The main questions we try to answer in this paper is if the PND approximation for upscaled poroelastic 226 

structures can provide sufficient accuracy for calculation of displacement, and inherently stress, 227 

around high-aspect ratio structures. Here we solved 100000 models for various geometrical and 228 

mechanical properties of the upscaled structure and the surrounding domain as described in Table 1. 229 

For all comparisons we only show the total displacement, not individual displacement components or 230 

various stress-components as the results will be highly dependent on the orientation of the HAR 231 

structure. 232 

In Fig. 2 we compare the RMS for the total displacement for the TEL (left) and the PND (right) for 233 

various aspect ratios for the HAR structure (thickness 𝐻𝐻, varies between 0.05-10 m, divided by length 234 

𝐿𝐿, which is constant and 100 m). In Fig. 2 the colour corresponds to the log10 of the stiffness ratio 235 

between the surrounding domain (𝐸𝐸0) and the upscaled domain (𝐸𝐸𝑢𝑢𝑢𝑢), noting that both 𝐸𝐸0 and 𝐸𝐸𝑢𝑢𝑢𝑢 236 

varies between 10 MPa and 10 GPa. The red colour indicates here a soft HAR (high 𝐸𝐸𝑢𝑢𝑢𝑢) compared to 237 

the surrounding domain (𝐸𝐸0), and for this case it can be seen in Fig. 2 that both methods are relatively 238 

accurate with a low RMS. For the case of stiff HAR (blue coloured dots), the RMS of TEL spreads widely 239 

compared to PND. This behaviour is also shown in Fig. 3. 240 

 241 
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 242 

Fig. 2 RMS (from Eq. 19) for total displacement for the TEL (left) and the PND (right). The x-axis is the aspect ratio, the colour 243 
is the ratio of the stiffness of the surrounding domain 𝐸𝐸0 and the upscaled domain 𝐸𝐸𝑢𝑢𝑢𝑢 (both 𝐸𝐸0 and 𝐸𝐸𝑢𝑢𝑢𝑢 varies between 244 
10 MPa and 10 GPa). See also Fig. 4 for the corresponding density plot of the RMS 245 

 246 

In Fig. 3 we compare the log10 of the stiffness ratio between the surrounding domain (𝐸𝐸0) and the 247 

upscaled domain (𝐸𝐸𝑢𝑢𝑢𝑢) for the TEL (left) and the PND (right). Both 𝐸𝐸0 and 𝐸𝐸𝑢𝑢𝑢𝑢 varies between 10 MPa 248 

and 10 GPa, hence the range of the ratio is from -3 to 3. In Fig. 3 the colour corresponds to the thickness 249 

𝐻𝐻. As in Fig. 2, for a stiff HAR, or a low value of log10�𝐸𝐸0 𝐸𝐸𝑢𝑢𝑢𝑢⁄ �, the RMS of TEL increases sharply 250 

compared to PND. 251 

 252 

 253 
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Fig. 3 RMS (from Eq. 19) for total displacement for the TEL (left) and the PND (right). The x-axis is the ratio of the stiffness of 254 
the surrounding domain 𝐸𝐸0 and the upscaled domain 𝐸𝐸𝑢𝑢𝑢𝑢. The colour is the thickness 𝐻𝐻. See also Fig. 5 for the corresponding 255 
density plot of the RMS 256 

 257 

Fig. 2 and Fig. 3 are scatter plots and the size of the markers can obscure data points that are similar. 258 

Therefore, to compensate for the lack of perspective on the data-points, a density plot (three-259 

dimensional histogram) of Fig. 2 is shown in Fig. 4 and of Fig. 3 in Fig. 5. 260 

 261 

 262 

Fig. 4 Density plot (three-dimensional histogram) of data-points in Fig. 2. Cold (blue) and hot (red) colours indicate low and 263 
high density, respectively. Note that total number of samples is 100000 264 

 265 

 266 
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Fig. 5 Density plot (three-dimensional histogram) of data-points in Fig. 3. Cold (blue) and hot (red) colours indicate low and 267 
high density, respectively. Note that total number of samples is 100000 268 

 269 

Density plot (three-dimensional histogram) of all the tested variables is shown in Fig. 6 for the upscaled 270 

models. 271 

 272 

 273 

Fig. 6 Density plot (three-dimensional histogram) of the RMS value for all the tested variables for the upscaled models: TEL in 274 
the top row and PND in the bottom row 275 

 276 

When correlating RMS directly to the various geometrical and mechanical properties the only clear 277 

leading-order property is the thickness of the upscaled structure for PND, see Fig. 6 (bottom). The RMS 278 

for the TEL is more complex but shows a clear correlation when considering the stiffness ratio, 𝐸𝐸0 𝐸𝐸𝑢𝑢𝑢𝑢⁄  279 

in Fig. 3 and Fig. 5. 280 

Fig. 7 shows the RMS-ratio of TEL and PND for the aspect ratio (𝐻𝐻/𝐿𝐿, left figure) and log10 of stiffness 281 

ratio (𝐸𝐸0 ⁄ 𝐸𝐸𝑢𝑢𝑢𝑢, right figure). Above the black horizontal lines in the figure the PND approximation is 282 

most accurate and below the black lines the TEL is most accurate. 283 

 284 
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 285 

Fig. 7 Comparing (ratio) RMS for TEL and PND for aspect ratio (𝐻𝐻/𝐿𝐿, left) and log10 of stiffness ratio (𝐸𝐸0 𝐸𝐸𝑢𝑢𝑢𝑢⁄ , right). The colour 286 
expressions are reversed in the figures (see legend) 287 

 288 

5 Discussion 289 

 290 

To evaluate the performance of a PND approximation of high-aspect ratio structures, a validation 291 

model was defined and solved for. To test the robustness and accuracy of PND it was compared to 292 

another typically used approximation (TEL) and a full-dimensional description. Here we discuss the 293 

differences in accuracy and the leading-order effects for the performance of the tested approximations 294 

(PND and TEL). 295 

The results show that the PND approximation is more robust for a wider range of parameters 296 

compared to the TEL. Considering the results in Fig. 2 and Fig. 7 (left) is can be seen that for the range 297 

of aspect ratio tested, 0.0005 to 0.1, the PND shows in general a higher accuracy (RMS below and up 298 

to 0.3) compared to TEL (RMS below and up to 1.2). In the context of faults and fractures, typical scaling 299 

attributes between length and thickness (equivalent to aspect ratio) are about 2 orders for faults 300 

(Torabi and Berg, 2011; Alaei and Torabi, 2017), and between length and aperture for fractures are 301 

about 2-3 orders of magnitude (Dichiarante et al. 2020). We note that the RMS, calculated from Eq. 302 

19, is not an exact but approximate expression of the error, or deviation between the upscaled models 303 

and the reference model (full-dimensional description of the upscaled domain). 304 

It was further found that for the PND approximation, the leading-order effects on the performance 305 

was the thickness of the high aspect-ratio domain, c.f. right Fig. 2. Another noticeable distinction of 306 
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the leading order effect for the PND approximation is the stiffness ratio. It can be seen in Fig. 3 (right) 307 

that the RMS is slightly lower when the upscaled structure is softer compared to the surrounding 308 

formations. 309 

The leading-order effects on the performance of the TEL approximation is related to the ratio of the 310 

stiffness between the high aspect-ratio object and the surrounding formations, c.f. left Fig. 3. The TEL 311 

performs well, and better than the PND approximation, when the upscaled structure is softer 312 

compared to the surrounding formations. It can be further seen in Fig. 3 that there is a correlation 313 

between the RMS for stiffness ratio (𝐸𝐸0 𝐸𝐸𝑢𝑢𝑢𝑢⁄ ) and thickness (𝐻𝐻), although less significant: high stiffness 314 

ratio favours low thickness, while low stiffness ratio (𝐸𝐸0 𝐸𝐸𝑢𝑢𝑢𝑢⁄ ) favours high thickness, the latter is a 315 

little counter intuitive. 316 

The simplicity of TEL is attractive, as it can be described by boundary forces and only requires splitting 317 

and decoupling of the degrees of freedom along the upscaled structure. If there are 𝑀𝑀 degrees of 318 

freedom along an upscaled structure, then TEL requires 2𝑀𝑀 degrees of freedom while PND require 3𝑀𝑀 319 

degrees of freedom. For example, in the validation model used here, the reference model that is using 320 

a full-dimensional high-aspect ratio structure (Fig. 8, right, cyan outline) has 20286 DOFs (degrees of 321 

freedom). Of the total number of DOFs, 𝑀𝑀 ≈ 200 DOFs are located on the dimensionally reduced 322 

domain (TEL and PND, Fig. 8, middle, magenta curve). This illustrates the effectiveness of the upscaling 323 

method, namely that the upscaled domains represent details in a model with a modest contribution 324 

to the total number of DOFs. 325 

 326 

Fig. 8 Calculation grid in model. Left: Overview of mesh in all three models, the red rectangle indicates the location where 327 
the solutions of the models are compared, cyan curves outline the full-dimensional model (dark-grey shaded area in Fig. 1, 328 
right) and magenta curve indicate the high-aspect ratio structure (TEL and PND). Centre: Close-up of high-aspect ratio 329 
structure (TEL and PND). Right: Close-up of full-dimensional high-aspect ratio structure. In the figure the length of the 330 
structure is 100 m, rotation is 30°, height is 10 m and amplitude is 10 m (see also Fig. 1) 331 
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A significant limiting factor when using TEL compared to PND is the strong reduction in accuracy when 333 

the stiffness of the upscaled domain is higher than the surrounding formations (low 𝐸𝐸0 𝐸𝐸𝑢𝑢𝑢𝑢⁄ ) where 334 

the error in TEL is up to 1000 times larger than PND, see Fig. 7. The elevated accuracy of the PND 335 

compared to TEL is because PND has the additional degrees of freedom (increase from 2𝑀𝑀 to 3𝑀𝑀 336 

number of DOFs). 337 

In this manuscript we approximate the geomechanical response in the HAR structure by linearising the 338 

displacement, going from 2𝑀𝑀 to 3𝑀𝑀 degrees of freedom, however, a higher order approximation can 339 

be obtained by adding more degrees of freedom, e.g., doubling to 6𝑀𝑀 degrees of freedom to a 340 

quadratic approximating of the displacement across the thickness of the upscaled structure (if linear 341 

approximation is insufficient). Another implication is that complex structures such as multi-layered 342 

structures can be upscaled by adding degrees of freedom for each virtual layer in the upscaled domain, 343 

remembering that the upscaled domain is collapsed to a lower-dimensional object. 344 

As can be seen in the analysis here, the TEL approximation can be a good approximation when the HAR 345 

object is soft compared to surrounding formations, but in the opposite case the accuracy becomes 346 

drastically reduced. An example of the former is a hydraulically active fault in basement rock, while an 347 

example of the latter is deformation bands in porous sandstone. The benefit of PND is that the accuracy 348 

does not break down when upscaled domain becomes stiff compared to the surroundings, and the 349 

accuracy mainly depends on the geometric aspect ratio: thickness to length ratio. High robustness in 350 

the HAR structure approximation is particularly import when the stiffness is unknown a priori, for 351 

instance during an inversion of geomechanical properties. 352 

 353 

6 Conclusion 354 

 355 

The objective of this paper is to validate the performance and accuracy of a poroelastic normal 356 

deflection zero-thickness interface element (PND) when approximating high-aspect ratio (geo-) 357 

mechanical structures. We performed a Monte Carlo simulation (100000 models) where we varied 358 

several mechanical and geometrical properties and compared the results from using PND to a full-359 

dimensional description of a high-aspect ratio structure (reference solution) and a commonly used 360 

approximation (a thin elastic layer, a Goodman-type zero-thickness interface element, TEL). 361 

We found that the PND is a robust description of a high-aspect ratio structure with a low error 362 

compared to a full-dimensional description and up to 1000 times more accurate than TEL. We note 363 

that the calculated deviation between the upscaled models and the reference model (full-dimensional 364 
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description of the upscaled domain) is not an exact measure of the error, but an approximate 365 

expression, because the approximations are geometric simplification, and a direct spatial comparison 366 

is therefore not possible. When considering slender structures with an aspect ratio of less than 5% 367 

(fractures and faults are typically <0.1-1%), the error was found to always be (for the wide range of 368 

tested parameters) less than 20 % but generally less than 10 % compared to the reference solution. 369 

TEL can perform well, even better than PND in some cases (when the upscaled structure is softer than 370 

surroundings) but is sensitive to the mechanical properties of the upscaled structure and the accuracy 371 

breaks down when the surrounding formations are softer than the upscaled structure, regardless of 372 

the tested thickness, shape, and rotation. 373 

The elevated accuracy from the PND-method comes from the addition of extra degrees of freedom, 374 

but the number of added degrees is relatively low compared to the total size of the problem of which 375 

the upscaled structures is a part of. Compared to TEL, we find that the PND is a more robust 376 

approximation for high-aspect ratio structures, it requires only a minor modification to any numerical 377 

code that already support TEL and represents only a marginal increase in model size. 378 

 379 
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