

Seismicity monitoring at onshore CO₂ geological storage sites

LESSONS LEARNT FROM HONTOMIN SITE

Dr. Almudena Sánchez de la Muela (CIUDEN)

How is seismicity induced?

Change in rock and fault stress state, **pore fluid pressure** rise favors failure

Poro-mechanical and thermo-mechanical effects, stress transfer, geochemical reactions and re-orientation of stress tensor also affect (modify Mohr circle diagram)

Seismicity induced by CO₂ injection

MINISTERIO VEL RETO DEMOGRAFICO

Might CO₂ injection cause less seismicity?

 dCO_2 (room conditions) ~ 1.8 kg/m³ dH_2O (room conditions) ~ 997.77 kg/m³

Overpressure stays constant or lowers after initial injection (dissolution into brine, reservoir brine migration to fractures)

HAZARDS

Leakage into caprock

Triggering perceptible/larger earthquakes, specially outside the study area

BENEFITS

Permeability enhancement: if confined to reservoir

Seismicity provides useful information

- 1. Assess the potential for induced seismicity Site characterization, 3D fault model, regional and/or local stress field
- 2. Seismicity monitoring:

Pre- (baseline), co- and post-injection

3. Well control:

hydromechanical characterization test and installation of pressure control valve

4. TRAFFIC LIGHT SYSTEM:

set a maximum magnitude allowed (based on risk assessment, population and infrastructures that could be affected)

SE SE - WEBINAR 3

1. Assess the potential for induced seismicity

Site characterization, 3D fault model, regional and/or local stress field and seismicity modelling

Alcalde et al. (2014)

2. Seismicity monitoring: Pre- (baseline), co- and post-injection

Vertical array of geophones covering the caprock-reservoir interface was planned!

HO08 station: SARA SS-45 sensor and SARA SL-06 digitizers

-SE⁻/SE - WEBINAR 3

2. Seismicity monitoring: co-injection

Local magnitude (M_L) range= -1 to 0.4

average location accuracy = 0.9km (X,Y) and 1.13km (Z)

3. Well control:

hydromechanical characterization test and installation of pressure control system

High flow rate of brine from the aquifer to avoid geochemical reactions and to induce microseismicity

Vilarrasa et al. (2019)

- 4. Traffic Light System (TLS or ATLS):
 - Real-time status
 - Risk state levels: magnitude threshold
 - ATLS: updated seismicity and geomechanical predictions

Unacceptable seismicity Stop operations

Concerning seismicity Modify operations

Acceptable seismicity Continue operations as planned

Lessons learnt from Hontomín CCS

- A surface network is capable of monitoring micro-seismicity Resolution depends on network coverage
- Limitations for only-surface arrays: magnitude, surface noise and location accuracy
- Key steps:
 - Characterize baseline seismicity pre-injection
 - Fault network modelling and seismicity modelling pre-injection
 - Network performance monitoring: best scenario we had ~70% of stations active > reduced detection and location capability!!

PARA LA TRANSICIÓN ECOLÓGI

Spatial and temporal distribution of micro-earthquakes 1. Real data on pressure front migration!

2. Fault geometry from nodal planes Improve fault model

3. Magnitude > rupture extension > InSAR (compare displacement)

Doglioni et al. (2015)

-SE-SE- WEBINAR 3

PARA LA TRANSICIÓN ECOLÓGICA Y EL RETO DEMOGRÁFICO ciu ner dad gia de la

4. Local stress field: principal stress axes orientation and magnitude relation

Check for stress field rotations induced by injection tests

Pressure front migration, updated fault network model, rupture extension and local stress field

Predictive geomechanical and surface deformation models

PROS and CONS of seismicity monitoring in onshore CCS

- Cheap
- Easy management
- On-going and fast software advances
- Provides constraints on reservoir,
 caprock and CO₂ behaviour
 Leakage, pressure front migration, local reservoir stress fields etc

- Results depend on seismicity generation No or little seismicity = limited results
- Provides very localized data Limited for overall picture
- Depends on network characteristics

and size

- The larger the network the better, more data
- the better is distribution, the better data quality will be

Take-home messages

- Seismicity monitoring is usually mandatory, and cheap. Take advantage and analyze data further to calibrate models and strengthen deformation characterization!
- The more resources and time invested, the more information obtained
- It is an exciting time for seismicity. Seismicity analysis is advancing quickly: keep an eye! new outputs to be obtained and cheaper tools (acquisition, processing and analysis) will be available