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Summary 
 
The compressional wave velocity (Vp) log derived from the sonic log is an essential parameter in 

overburden, cap, and reservoir rocks characterization. However, the sonic log is often unavailable in 

either the whole section or most intervals of the wells, especially at shallow depths, which interval is 

crucial for CO2 injection site evaluation. Therefore,  in this study, we implemented two machine 

learning algorithms, namely random forest (RF) and multi-layer perceptron (MLP), to predict the Vp 

log of the Nordland caprock Shale and Utsira Formation reservoir sandstone at the Sleipner CO2 

storage. The training dataset was created by involving four parameters such as gamma-ray, density, 

deep resistivity, and depth as initial features, and a combination of gamma-ray multiplied by density 

was generated as an additional feature to improve the models’ predictive capabilities. Prior to the models 

training, several pre-processing steps such as data splitting, outliers removal, and data standardization 

were also carried out. The results showed the MLP algorithm has better performance, and hence, it is a 

more generalized model for this study than the RF. This was indicated by the higher correlation and 

lower error the model has after being validated with hidden datasets generated from two other wells. 
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Machine learning application for compressional wave velocity log prediction in Sleipner CO2 

storage, offshore Norway 

 

Introduction 

 

In subsurface characterization, compressional wave velocity (Vp) log derived from the sonic log is 

widely used for reservoir property prediction (e.g., porosity, net-to.gross, etc.), evaluate caprock quality 

by calculating geomechanical properties (e.g., Young's Modulus, Poisson's ratio, etc.) and generate 

synthetic seismic . Unfortunately, due to budget control and operational issues, the sonic log is either 

not always available or incomplete in many wells, especially at shallow depths (Fig. 1a) like Sleipner 

CO2 storage in the North Sea, offshore Norway (Fig. 1b). Therefore, the absence of the sonic log can  

hinder the workflow in subsurface characterization. One common solution for this problem is to predict 

sonic log using empirical relations (e.g., Faust, 1953; Gardner et al., 1974) or synthesizing the missing 

logs based on the neighboring wells which have acquired sonic log. However, these methods have 

uncertainties and limitations for accurately predicting the missing log. Due to the high predictive 

capability of machine learning (ML), ML algorithms  can give a better solution. In this study, we tested 

two ML methods to optimize the data analysis and predict the sonic log or compressional wave velocity 

(Vp) log in the Sleipner CO2 storage. 

 
Figure 1 (a) The measured gamma-ray and deep resistivity of well 15_9-21S for the overburden and 

caprock, reservoir (TR: top reservoir, and BR: base reservoir), and underburden. However, it can be 

seen that the sonic log was not acquired in in those intervals. (b) The study area map representes the 

structural elements (VSB: Ve Sub-basin, ST: Sleipner Terrace, LT: Ling Depression, UH: Utsira High, 

and GT: Gudrun Terrace) and discovery fields (SV: Sleipner Vest, SØ: Sleipner Øst, U: Utgard field, 

G: Gungne field, S: Sigyn field, V: Volve field, and GK: Gina Krog field). Moreover, the studied wells 

showed in the map where yellow dots represent the training wells and red dots represent the validation 

wells. Additionally, the injection well in the area is marked by green star, while the rest of the 

exploration wells in the studied area are marked by gray dots.    

 

The Sleipner CO2 storage project  is the first of its kind operated by Equinor since 1996. To date, a total 

of 24 Mt of CO2 has been stored in the saline aquifer of the Utsira Formation Sandstone at a depth of 

about 1000 m that capped by the Nordland Shale (Chadwick et al., 2006). The Utsira Formation, a 200-

250 m thick late Cenozoic sandstone, has been the main reservoir unit of the Sleipner CO2 storage, while 

the Nordland shale acts as the primary seal of marine claystone with a thickness of around 250 m and 

overlain by several hundred meters of Quarternary sediments (Zweigel et al., 2004). In this study, we 

implemented machine learning algorithms of random forest (RF) and multi-layer perceptron (MLP) 

with three hidden layers and 100 neurons in each layer to estimate the Vp logs using several other logs 

as features such as gamma ray (GR), density (RHOB), deep resistivity (RDEP), depth, and a 

combination of GR multiplied by RHOB (GR×RHOB). The targeted intervals are the caprock of 

Nordland shale and the reservoir rock of Utsira formation of the Sleipner CCS project. A total number 

of 14,969 data points, which correspond to each feature, were collected from four wells to train the 
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machine learning models. For validation purposes, the resulted models were tested on a measured 

dataset generated from one well within the study area. 

 

Methodology 

 

The general workflow is presented in Figure 2. Data sorting was the initial step in this workflow. Five 

wells were selected from the Sleipner Vest area, where four wells (15/9-1, 15/9-2, 15/9-3, and 15/9-6) 

were used for training the model while other well (15/9-12) was used for model validation. In addition, 

we also included one well (15/9-16) outside the clustered area, , which is located in the Sleipner Øst and 

near the injection well (15/9-A-16) of the Sleipner CCS project, to make a more robust validation of the 

models. The next process was feature selection and data splitting. Among the available logs in the wells, 

we selected the depth, GR, RHOB, RDEP, and generated a new parameter GR×RHOB (GR multiplied 

by RHOB) as features while the Vp as a target. Four wells were combined to generate a whole training 

dataset containing six parameters (depth, GR, RHOB, RDEP, GR×RHOB, and Vp). In addition, we also 

generated another dataset from wells 15/9-12 and 15/9-16, which contain only the features logs to 

validate the resulted models. Then, the training dataset was split into two sets: training sets (80%) and 

test sets (20%). Quality check was performed by removing missing values and outliers. For this purpose, 

we implemented Isolation Forest (Liu et al., 2008) technique to automatically detect and remove the 

outliers from the dataset. Finally, data standardization was done to resize the distribution of values so 

that the mean of the observed values is 0 and the standard deviation is 1. This is an important procedure 

in the pre-processing stage, especially when the input datasets are measured in different measurement 

units. After previous steps were successfully performed, then the training dataset was ready to be trained 

by the algorithms; in this case, RF and MLP algorithms were tested. In this procedure, R-squared (R2) 

and root-mean-squared-error (RMSE) were used as scoring criteria to evaluate the models. Once the 

training process was done, the generated models were applied to the test sets. Finally, the model 

validation was achieved by comparing the predicted results with the measured Vp from wells 15/9-12 

and 15/9-16 and computing both R2 and RMSE to evaluate the performance and prediction accuracy. 

 

 
 

Figure 2 Illustrated the workflow used in this study.  

 

Results and Discussion 

 

This study investigated two distinct lithologies, Nordland shale caprock and Utsira reservoir sands, from 

the Sleipner CO2 storage. When predicting the Vp in this dataset, it is important to select other 

parameters which can properly differentiate between these two formations to make good predictors. 

Therefore, we started this work by involving only three features, namely the gamma-ray, density, and 

deep resistivity, to predict the compressional wave velocity using the RF algorithm. However, the model 

performed relatively poorly on the test set with low R2 and quite high RMSE, 0.631 and 0.082, 

respectively. The performance was worst when tested on the validation dataset from well 15/9-12, with 

even lower R2 (0.423) and higher RMSE (0.065). The quality of the model performance increased as 

we added more features, and the best results were achieved when we included all five features in the 

training set. The use of depth in the dataset significantly increased the model performance. We also 

generated a new feature through feature engineering by multiplying the gamma-ray and density 

(GR×RHOB) to create a stronger predictor and finally, resulting  in a much better model. All the results 

presented  in Figure 3 are predictions generated by using all five features (depth, GR, RHOB, RDEP, 

and GR×RHOB). 
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Figure 3 Measured Vp values (solid black line) and predicted Vp values generated by random forest 

(dashed red line), multi-layer perceptron (dotted green line), and Gardner’s equation (light blue line) 

plotted by the number of samples in well 15/9-12 (a) and 15/9-16 (c); and scatter plot of the predicted 

Vp values (random forest: red dots, multi-layer perceptron: green dots, and Gardner’s equation: light 

blue dots) correspond to each of the measured values in well 15/9-12 (c) and 15/9-16 (d). The 

predictions generated from both algorithms show extremely good correlation by overlaying the 

measured data, however, Gardner et al. (1974) based prediction shows large discrepancies in most of 

the intervals compared to the measured data. 

 

Table 1 shows the summary of the evaluation metrics of the test and validation sets for both RF and 

MLP models. On the test sets, the RF exhibits a good performance, which in terms of R2 is 0.997 and 

RMSE is 0.008. The MLP also performs well even though with slightly lower R2 (0.995) and RMSE 

(0.009) scores. Figure 3 incorporates our predictions and comparison with real measured values on both 

well 15/9-12 and 15/9-16. In addition, we also included Vp calculation from density logs using 

Gardner’s empirical equation (Gardner et al., 1974) to add more comparison to the results. 

 

Table 1. Summary of evaluation metrics on of the test set and validation set 

 Dataset R2 RMSE 

Test Set (RF) 0.997 0.008 

Test Set (MLP) 0.995 0.009 

Validation Set: Well 15/9-12 (RF) 0.967 0.017 
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Validation Set: Well 15/9-12 (MLP) 0.984 0.011 

Validation Set: Well 15/9-16 (RF) 0.888 0.03 

Validation Set: Well 15/9-16 (MLP) 0.974 0.014 

 

Both machine learning models perform well on the validation dataset, either in well 15/9-12 or 15/9-16. 

This is indicated by how close the predicted values match with the measured ones, as shown in Figure 

3. The total number of predicted Vp in well 15/9-12 is 2837 samples. As seen in Table 1, the RF model 

shows good performance with R2 is 0.967 and RMSE is 0.017. However, the MLP model generated 

better results indicated a higher R2 value, 0.984, and lower RMSE, 0.011. These two models also show 

good prediction capability when tested on the validation dataset from well 15/9-16 even though the 

performance indexes are relatively lower than the previous ones. The total number of predicted Vp from 

this well is slightly less than well 15/9-12 with 2692 samples. The R2 of the RF model is 0.888, and the 

RMSE is 0.03, while the MLP shows better performance in terms of R2 is 0.974 and RMSE is 0.014. 

However, the predicted Vp generated from Gardner et al. (1974) equation in both wells hardly matches 

the real values. From plots in Figure 3, we noticed that most of the generated Vp values are situated 

quite far from the real values and have significant differences compared to the measured ones, 

consequently leading to less accurate prediction. This is because the Gardner’s equation only considers 

one parameter, the density, for calculating the Vp, while in the machine learning models, we considered 

more parameters. 

 

Conclusions 

 

This study successfully demonstrated the machine learning workflow to predict the compressional wave 

velocity (Vp) log for both the Nordland shale caprock and Utsira sandstone reservoir of Sleipner CO2 

storage by preparing datasets, training and testing regression models, and blind testing on validation 

datasets. According to the evaluation metrics, the MLP model outperforms the RF model by showing 

higher R2 and lower RMSE values when applied on validation sets from the two wells. This also 

indicates that the MLP model is more generalized to be implemented in this study area. In addition, 

there are many other methods that can be applied to improve the models’ performance and stability, 

such as handling the outliers with other methods, including more wells and features in the training 

process, and training other regression models. Splitting the datasets into two parts in terms of the 

lithological unit, such as shale and sand, and studying them separately could be an attempt to get even 

better prediction results. 
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